https://datascience-project.eu/

Training Fiche Template

Title	Principal component analysis (PCA)
Keywords (meta tag)	PCA, Correlation, quantitative variables, explained variance, eigenvalues.
Language	English Learnig outcomes
This module aims to introduce and explain Principal Component Analysis technique - Know the logic of PCA; - Know the requirements	
- conduct a PCA	
Training course:	-conduct a PCA in R with the FactorMineR package
Data Science Literacy	Data
Data Visualisation and Visual Analytics Module	
Description	In this training module, the multidimensional analysis technique called Principal Components Analysis (PCA) will be presented, whose objective is to reduce the dimensionality of a phenomenon under investigation while preserving the information contained in it. The technique is applicable to phenomena measured with quantitative variables, thus distinguishing itself from other dimensionality reduction techniques, such as simple correspondence analysis (CA) or multiple correspondence analysis (MCA), developed for the analysis of qualitative variables. The last part of the module will be dedicated to the application of PCA with R.

https://datascience-project.eu/
$\left.\begin{array}{l|l}\hline \text { Contents arranged in } 3 & \begin{array}{l}\text { 1. INTRODUCTION } \\ \text { levels } \\ \text { Principal component analysis (PCA) is a statistical multivariate analysis } \\ \text { technique for dimension reduction. In practice it is used when there are } \\ \text { many correlated variables within a dataset, in order to reduce their } \\ \text { number, losing the smallest possible amount of information. } \\ \text { PCA has precisely the aim to maximize variance, calculating the weight } \\ \text { to be attributed to each starting variable in order to be able to } \\ \text { concentrate them in one or more new variables (called principal } \\ \text { components) which will be a linear combination of the starting variables. }\end{array} \\ \text { 2. Principal component analysis' requirements } \\ \text { To understand whether it makes sense to conduct principal component } \\ \text { analysis, it is important to analyze the variables to be used in order to } \\ \text { have clear some of their characteristics. Specifically, the variables must } \\ \text { meet the following requirements: } \\ \text { - The variables must be quantitative } \\ \text { PCA is valid only when the variables are numeric. In case of different } \\ \text { units of measurement, you need to standardize the variables before } \\ \text { proceeding. However, in some cases it is also used for "Likert scale" } \\ \text { variables and for "binary variables". Although numerically the results } \\ \text { are very similar to each other, in these cases it would be preferable to } \\ \text { use alternative methods. } \\ \text { that variable should not be included in the PCA. Forcing that variable to }\end{array}\right\}$

Co-funded by the Erasmus+ Programme
of the European Union
https://datascience-project.eu/

	merge with others will result in a very high loss of information and this is something that is generally better to avoid. - Lack of outliers As with all variance-based analyses, single outliers can affect the results above all if they are very large and if the sample size is small. To this end, It is useful to create boxplots or scatter plots, from which it is possible to deduce linear relationships between pairs of variables. - Quite large sample size There is no univocal threshold value, but generally speaking it is advisable to have at least 5-10 statistical units for each variable you want to include in the PCA. For example, if you want to try to summarize 10 variables with new components, it would be advisable to have a sample of at least 150 observations. 3. How to Conduct PCA
3.1 After verifying the dataset requirements, checking that the variables	
have the right characteristics to be able to conduct the principal	
component analysis, here are the different steps to conduct it:	

Co-funded by the Erasmus+ Programme
of the European Union
https://datascience-project.eu/
$\left.\left.\begin{array}{|l|l}\hline \text { case, in fact, the null hypothesis can be rejected with a significance level } \\ \text { of 5\%. } \\ 3.3 \text { Principal components' extraction: } \\ \text { The crucial part of PCA is to establish the adequate number of factors } \\ \text { that can best represent the starting variables. } \\ \text { To better understand this concept, imagine that your dataset is a city you } \\ \text { don't know, and each major component is a street in this city. If you } \\ \text { wanted to get to know this city, how many streets would you visit? You } \\ \text { would probably start from the central street (the first main component) } \\ \text { and then explore other streets. How many though? } \\ \text { In order to say that you know a city well enough, the number of streets }\end{array}\right\} \begin{array}{l}\text { to visit varies according to the size of the city and how similar or different } \\ \text { the streets are, obviously. Similarly, the number of components to } \\ \text { extract depends on how many variables you choose to include in your } \\ \text { principal component analysis and how similar they are to each other. In } \\ \text { fact, the more correlated they are, the lower the number of principal } \\ \text { components necessary to obtain a good knowledge of the starting } \\ \text { variables. Conversely, the less they are correlated, the greater the }\end{array}\right\}$

Co-funded by the Erasmus+ Programme
of the European Union

https://datascience-project.eu/

Co-funded by the Erasmus+ Programme
of the European Union
https://datascience-project.eu/
\(\left.\begin{array}{|l|l}\hline From the graph above, for example, you can see that the number of

points above the elbow is 2 .

The final part of PCA consists in giving a name to the individual main

components found.

4. PCA with R

With statistical software (such as SPSS, Jamovi and R) PCA is a very simple

operation. A few clicks are enough to be able to obtain an output to be

interpreted. There is therefore no software that is preferable to the

others as it is a widely used technique and all statistical programs allow

it to be performed easily and without having to carry out any hand

calculation. However in this module we will show how to conduct PCA

with the R software.

The whole process to implement PCA on R will be represented in the

power point attached to this module, namely:

\checkmark \quad Carrying out all the steps that are based on matrix, geometric

and statistical proofs;

\checkmark \quad Through the PCA direct command of the FactoMineR package.\end{array}\right\}\)| With the summary command we can see the importance of the |
| :--- |
| components in terms of standard deviation, proportion of explained |
| variance and cumulative explained variance, both for individuals and for |
| variables. |
| In this module we will just present the FactoMineR package. |
| FactoMineR is able to carry out principal components analysis by |
| reducing the dimensionality of the multivariate data to two or three, |
| which can thus be displayed graphically with a minimum loss of |
| information and this can be done using a single command, that is PCA, |
| we will insert the matrix object of analysis between parentheses |

https://datascience-project.eu/

	With the head command head(ris.pca\$eig) instead, you can calculate the importance of the eigenvalues. The command, in fact, will give us the values of the eigenvalues, the percentage of the explained variance and the cumulative explained variance for each variable. Example of what we will see on R $\cdots\{r\}$ head(ris. pca\$eig)
	Finally, in order to be able to draw the scree-plot of the eigenvalues, we will insert the object of analysis between parentheses barplot(res.pca\$eig[,1], main="Eigenvalues' scree-plot")
	With the Main command we'll indicate the title of the graph. Example of what we will see on R
	Eigenvalues' scree-plot
	comp 1 comp 2 comp 3 comp 4 Another useful package for PCA (we won't cover it in this module though) is factoextra, which provides some easy-to-use functions to

https://datascience-project.eu/

Co-funded by the Erasmus+ Programme
of the European Union
https://datascience-project.eu/

