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Training Fiche Template 

Title   Correspondence Analysis, AC 

Keywords (meta tags) AC, qualitative variables, explained inertia, eigenvalues  

Language English 

Objectives / Goals / 

Learnig outcomes 

The aim of this module is to introduce and explain the Principal 

Component Analysis technique. 

At the end of this module you will be able to: 

- Know the logic of AC 

- Know the requirements 

- Conduct an AC   

- Conduct an AC in R with the FactoMineR package 

Training course:  

Data Science Literacy  

Data Visualisation and Visual Analytics Module X 

Introduction to Data science for Human & Social Sciences  

Data Science for good  

Data Journalism and Storytelling  

Description In this training module you will be presented the multidimensional 
analysis technique called Correspondence Analysis, AC.  
Correspondence Analysis is a form of multidimensional scaling, which 

essentially builds a kind of spatial model that shows the associations 

between a set of categorical variables. If the set includes only two 

variables, the method is usually called Simple Correspondence 

Analysis (SCA). If the analysis involves more than two variables, then 

it is usually called Multiple Correspondence Analysis (MCA). In this 

module we will deal with the analysis of simple correspondences, the 

objective of this analysis is to reduce  the dimensionality of the 

phenomenon under investigation while preserving the information 
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contained by it. The technique is applicable to phenomena measured 

with  qualitative variables. 

The last part of the module will be dedicated to the application of AC 
with the R software. 

Contents arranged in 3 

levels 

1. INTRODUCTION 
 
Correspondence analysis, AC, is a multidimensional analysis technique 

that is capable of translating almost any type of table consisting of 

numerical data into graphical form. The object of the AC are the 

contingency matrices, whose elements indicate the number of times 

the characteristics of two different quantities have been detected 

together. The main goal of the AC is to analyze the relationships 

between two variabiland qualitative observed on a collective of 

statistical units. This is done through the identification of an "optimal" 

space, i.e. of a reduced dimension that represents the synthesis of the 

structural information contained in the original data.  The purpose of 

the analysis is to bring to light the interweaving of links, or 

correspondences, that exist between the data under examination. 

2. REQUIREMENTS FOR MATCHING ANALYSIS 

In order to conduct correspondence analysis  it is important  to analyze 

the variables to be used to have clear some of their characteristics.  

Specifically, the variables must have the following requirements: 

- The variables must be  Qualitative: 

Qualitative variables are variables that are not represented by 

numbers, but by modalities, for example: gender, level of 

education, marital status, etc. These modalities, also called 

categories, must be exhaustive and mutually exclusive.  Mutually 

exclusive means that the variable modalities must not contain 

the same type of information. For example, for the variable "hair 

color" you can not enter the modes "dark hair" and "brown 

hair", as dark hair also means brown hair and vice versa.  

Estaustive means that the modalities of a variable must take into 

account all possibilities. For example, for the variable "level of 

education" the modalities "diploma", "bachelor's degree", 

"second-level degree" are inserted. These three modalities do 

not take into account all possible liville of education. 
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- The variables must be interdependent: 

Before performing the analysis of the correspondences it is 

necessary to verify the degree of interdependence between the  

two variables considered, as if they were to be independent it 

may not make sense to conduct the analysis of the matches.  

To do this, perform the chi-square test:  

𝐻0: the two variables are independent 

𝐻1: the two variables are not independent 

To interpret the results of the test we observe the p-value: 

p-value < 0.05: the null hypothesis is rejected and consequently 

the variables are considered with a certain degree of 

dependence. 

3. How to conduct AC 

After verifying the CA requirements, you can move on to the actual 

analysis. 

 
3.1) Contingency tables 
In correspondence analysis we work with contingency tables, which 
contain the joint frequencies of the modes of the two qualitative 
variables X and Y.  These matrices are always made up of never 
negative integers that are counts , i.e. simple records of what has 
occurred. In addition, both categorical variables play a symmetric role 
in which all elements have the same nature. 

   
 

 
 
X, Y are the qualitative variables.  
 
𝑥1,  𝑥2 ,  𝑥3 : are the modes of the variable of X 

𝑦1,  𝑦2 ,  𝑦3 : are the modes of the variable of Y 
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𝑛𝑖,𝑗:  are the absolute joint frequencies, i.e. the frequencies of the pairs, 

for example 𝑛1,1:  𝑋 = 𝑥1; 𝑌 =  𝑦1 

𝑛𝑖·: are the row marginals: 𝑛𝑖. =  ∑ 𝑛𝑖,𝑗
𝐶
𝐽=1  

𝑛·𝑗: are the column marginals: 𝑛.𝑗 =  ∑ 𝑛𝑖,𝑗
𝑅
𝑖=1  

These are the sum for the fixed row (or column) of the joint frequencies 

on the modes of Y (for the columns on the modes of X). 

n = is the sample number, which can be obtained by adding the marginals 

of row or column: 𝑛 =  ∑ ∑ 𝑛𝑖,𝑗
𝐶
𝑗=1

𝑅
𝑖=1      ∀ 𝑖, 𝑗 

You can switch from absolute frequencies to relative frequencies by 

dividing each absolute frequency by n: 𝑓𝑖,𝑗 =  
𝑛𝑖,𝑗

𝑛
       

3.2) Row Profile Matrix and Column Profile Matrix 

The row profiles matrix is obtained by dividing the absolute frequencies 

(or relative frequencies) by the respective row marginals. Therefore: 

𝑛𝑖,𝑗

𝑛𝑖
=  

𝑓𝑖,𝑗

𝑓𝑖.
      ∀ 𝑖, 𝑗  

The contingency table will be: 

 

On the marginals of row we have all 1 and this represents the sum of 

the row profiles. 

On the marginals of the column there are the average profiles that are 

obtained by adding the relative frequencies per column; or by 

averaging the elements of the row profile array, per column. This is a 

weighted average, where the masses are represented by the row 

marginals  𝑓𝑖. .  
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Working with frequencies loses a dimension, so the row space is 

represented by a space C-1 dimensions, i.e.  

Can be construct a  diagonal matrix of row marginals 𝑫𝑹, that has row 

profiles on the major diagonal.  The diagonal matrix of row marginals is 

a matrix R· R, which has dimensions equal to the rows and on the major 

diagonal contains the row marginals of the relative frequency table. A 

diagonal matrix is a matrix whose generic element on the major 

diagonal is the marginal of row, at above or below it, there are all 

zeros. It is always a symmetrical and square matrix. With the diagonal 

matrix of row margins one can construct  the array of row profiles: it is 

obtained by dividing the relative frequencies by the row marginals 
𝑭

𝑫𝑹
.  

The dimensions of F are R· C, while 𝑫𝑹 it has dimension R· R, since the 

division between matrices cannot be done, one calculates the inverse 

of 𝑫𝑹 and multiplies by F, thus solving the dimensionality 

problem: 𝑫𝑹
−𝟏 · 𝑭 . 

The same goes for the columns, with some small differences. 

The column profiles matrix is constructed by dividing the absolute 

frequencies by the relative column margins: 

𝑛𝑖,𝑗

𝑛.𝑗
=  

𝑓𝑖,𝑗

𝑓.𝑗
      ∀ 𝑖, 𝑗  

The contingency table you get will be: 

 

In this case on the marginals of the column you will have all 1 and on 

the marginals of row you have the average column profile.  In this case 

the masses are represented by the column marginals 𝑓.𝑗. Obviously, 

even in column space you work at less than one dimension, so the 

column space is R-1.  
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Can be construct a diagonal matrix of  marginals column 𝑫𝑪, that has 

column profiles on the major diagonal. The  diagonal matrix of column 

marginals is a matrix C·C, that has dimensions equal to the columns and 

on the major diagonal contains the column marginals of the relative 

frequency table. A diagonal matrix is a matrix whose generic element 

on the major diagonal is the marginal of column, above or below it, 

there are all zeros. It is always a symmetrical and square matrix. With 

the diagonal matrix  of column marginals one can construct the matrix 

of column profiles: it is obtained by dividing the relative frequencies by 

the column marginals 
𝑭

𝑫𝑹
.  The dimensions of F are R· C, while 𝑫𝑪 

having dimension C·C, since the division between matrices cannot be 

done, one calculates the inverse of 𝑫𝑪 and post-multiplies to F, thus 

solving the dimensionality problem:  𝑭 · 𝑫𝑪
−𝟏 . 

 

3.3) Dinstances 

In the correspondence analysis it is necessary to understand what 

distance there is between the values, this in order to understand if the 

modalities are far or close to each other and therefore if they resemble 

each other or not. You can do this by observing the frequencies: the 

lower they are, the closer they are and vice versa. There are various 

methods for calculating distance: Euclidean distance  and chi-square 

distance. 

The Euclidean distance is the simplest and rewards the highest 

distances at the expense of the lower ones. It is calculated by making 

the difference of the relative frequencies by raising them to the square. 

For row profiles: 

 

For column profiles: 
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The chi-square dinstance rewards the lower distances because the 

frequencies with low number are reweighted with respect to the rows, 

inserting in the formula the inverse of the column marginal (respect to 

the columns, inserting in the formula the inverse of the marginal of 

row). The disadvantage of chi-square distance is that the reciprocal of 

column (or row) marginals can tend to zero and therefore a single 

response can contribute excessively to the calculation of the distance. 

3.4) Rows Space and Columns Space 

In rows space the two components are:  

- Row profile: 𝐃𝐑
−𝟏 ∙ 𝐅 

- Metric: 𝐃𝐂
−𝟏 

Let's start with the formula: 

𝜳𝒏×𝟏 = 𝑿𝒏×𝒑 · 𝒖𝒑×𝟏 

By making appropriate substitutions: 

𝜳 = 𝑫𝑹
−𝟏 ∙ 𝑭 · 𝑫𝑪

−𝟏 · 𝒖 

The objective of correspondence analysis is the set of unit axes that 

allow to maximize the distances between the projections of the row 

profiles. We must, therefore, look for those vectors that maximize 

projections. Since vectors 𝒖 can be infinite, the unit norm constraint is 

added.  

𝒖𝑻 ∙  𝐃𝐂
−𝟏 ∙ 𝒖 = 𝟏 

Maximization problem: Maximize the explained inertia (explained 

variation), which corresponds to the variability for quantitative 

variables.  

 

To solve the constrained maximization problem, use the method of 

Lagrange multipliers: 
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𝝀= Lagrange multiplier, which is a scalar; 

u=  vector of weights we are looking for 

By making the necessary replacements, we will have: 

 

We perform the transposition operations, substitute a 𝑫𝑹 ∙ 𝑫𝑹
−𝟏 for the 

identity matrix I and [(−𝝀) · (−1)] replace it with 𝝀.  We can then 

remove  the transpose from the diagonal matrices 𝐃𝐂
−𝟏 and 𝐃𝐑

−𝟏, since 

the transpose of a diagonal matrix does not change.  Get: 

 

We calculate the partial derivatives, deriving the Lagrangian respect to 

𝒖 and put them equal to 0: 

 

Multiply the equation by 𝐃𝐂
−𝟏: 

 

If we replace the transpose of row profiles and the matrix of column 

profiles with S, we can write the characteristic equation as: 

 

Maximizing the explained inertia of row profiles is equivalent to 

decomposing this matrix into eigenvalues and eigenvectors of the 

same. The first eigenvalue is associated with the first eigenvector that  
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explaining the maximum inertia. The eigenvectors that are extracted 

subsequently, will be extracted orthogonally placing the orthogonality 

constraint 

 𝒖𝟏
𝑻 ∙ 𝑫𝑪

−𝟏 ∙ 𝒖𝟐 = 𝟎 

We use the orthogonality constraint to be able to choose the second 

component that will explain the inertia that is not explained by the first 

component. Obviously, the first extracted component explains the 

maximum inertia, that is the maximum elongation of the points cloud. 

 

In the columns space two components are: 

- Column profile: 𝐅 · 𝐃𝐂
−𝟏 

- Metric: 𝐃𝑹
−𝟏 

Let's start with the formula: 

𝝋𝒑×𝟏 = (𝑿𝒏×𝒑
𝑻 )

𝒑×𝒏
· 𝒗𝒏×𝟏 

We replace and get 

𝝋 = 𝐃𝐂
−𝟏𝑭𝑻𝐃𝑹

−𝟏𝒗 

The maximization problem to be solved with Lagrange multipliers is: 

 

 

Proceeding as in the space of the rows, finally we will get:  
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Substituting the matrix of column profiles and the transposed metric of 

row profiles with 𝑺∗ we obtain the characteristic equation:  

 

Geometrically maximizing the explained inertia, i.e. making the lost 

information as small as possible and the observed information as large 

as possible, will be: make the distance 𝑀1𝐻1as small as possible and 

the distance 𝑂𝐻1 as large as possible. 

 

We must therefore find the straight line f (in red) interpolating the 

points of vector space, so  the distance between all points of the space 

and points projected orthogonally on the straight line f is the minimum 

possible. 

Eigenvalues in rows space correspond to eigenvectors in column space, 

so the eigenvalues  of S correspond to those of 𝑺∗. Eigenvectors are 

equal to each other except for one constant. So when we have to 

maximize we don't need to decompose into eigenvalues  and 

eigenvectors S and 𝑺∗, just do it with one.  The amount of inertia 

explained is equal whether we calculate S or 𝑺∗, the relation between 

the two spaces is represented by the transition formulas:  
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Rows space:  

 

With: 

 

By applying the appropriate substitutions: 

 

Get: 

 

For the space of the rows, therefore: 

 

Column space: 

 

Where: 
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By applying the appropriate substitutions: 

 

Get: 

 

 For column space: 

 

 

4) Example with R software 

Verify a possible relationship between the distributions of livestock and 

the different Italian regions. The data refer to the year 2011, collected 

by the banks available on the Istat website. 

Hypothesis: the various regions, depending on the territorial 

characteristics and the needs of the population, choose to raise some 

heads of cattle rather than others. 

Dataset: 
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We import the dataset: 

 

In the row names field, select the wording: "use first column" in order 

to have the labels of both individuals and variables on the graphs. 

In the decimal field  we select "comma". 
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With the command: 

X<-as.matrix(nome_del_dataset) 

We attribute to X,  as an object, the  dataset used in the analysis. 

Before being able to perform the AC it is necessary to establish the 

degree of interdependence between the two characters considered, this 

is because in the event that they are independent it may not make sense 

to continue AC. To verify this we perform th chi-square test. 

The command is: 

chiquadro<-chisq.test(X) 

 

It can be observed that the p-value is lower than the most commonly 

used significance level i.e. 0.05. We can therefore reject the null 

hypothesis of statistical independence between the two variables and 

we can continue with the analysis. 

Now we want to create a matrix of relative frequencies F. 
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We calculate the sample number, with the command: 

n<-sum(X) 

and then dividing the starting matrix (therefore all the joint frequencies) 

by the sample number we obtain the matrix F. Command: 

F<-X/n 

The next step is to get the row and column profile tables. In order to 
do this, first of all, it is necessary to calculate the marginals of row and 
column. Respectively the commands are: 
 
sumrow<-apply(F,1,sum) 
sumcol<-apply(F,2,sum) 
 
Then we calculate the diagonal matrix of the marginals of row and its 
inverse with the commands: 
 
Dr<-diag(sumrow) 
Dr_inv<-solve(Dr) 

 
Now we can calculate row profiles. In matrix terms we premultiply the 
inverse of the diagonal matrix of the marginal row to the matrix of 
relative frequencies. The command to use is: 
 
Pr<-Dr_inv%*%F 
 
The same thing for column profiles, remembering that in this case the 
inverse of the column matrix must be post-multiplied to the matrix of 
relative frequencies. 
 
Dc<-diag(sumcol) 
Dc_inv<-solve(Dc) 
Pc<-F%*%Dc_inv 
 
 
Now we can calculate the distances between the points. As already 
mentioned, there are two types of distance: Euclidean and Chi-square. 
 
Euclidean distance row profiles: 
 
d_euc_r<-dist(rbind(Pr[1,],Pr[2,])) 
 
Euclidean distance  column profiles: 
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d_euc_c<-dist(rbind(Pr[,1],Pr[,2])) 
 
Distance of chi-square row profiles: 
 
d_r<-pr[1,]-pr[2,] 
d<-d_r^2/sumcol 
d_chi_r<-sqrt(sum(d)) 
 
 
Chi-square distance column profiles: 
 
dc<-Pr[,1]-Pr[,2] 
dc<-dc^2/sumrow 
d_chi_c<-sqrt(sum(dc)) 
 
 
The characteristic equation of the row profile matrix: 
 
S<-t(Pr)%*%Pc 
 

Since the matrix S  is  not symmetric, it is necessary to diagonalize it to 

obtain S_tilde: 

A<-t(F)%*%Dr_inv%*%F #simmetria 

Dc_12<-diag(sumcol^(-1/2)) 

S_tilde<-Dc_12%*%A%*%Dc_12 

Now we have to maximize the inertia explained by decomposing the 

matrix into eigenvalues and eigenvectors: 

AC<-eigen(S_tilde) 

lambda<-as.matrix(AC$values) 

lambda<-lambda[-1,] 

w<-AC$vectors 

u<-Dc^(1/2)%*%w 

u<-u[,-1] 
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The characteristic equation of the column profile matrix  : 

S_star<-F%*%Dc_inv%*%t(F)%*%Dr_inv 

To move from u to v, we use transition formulas (since the amount of 

inertia explained is equal in both row and column space). 

sq_lambda<-diag((sqrt(lambda))^(-1)) 

v<-F%*%Dc_inv%*%u%*%sq_lambda 

We calculate factors and coordinates, first row space and then 

columns: 

fp_r<-Dc_inv%*%u 

fp_c<-Dr_inv%*%v 

PHI_coord<-Dc_inv%*%t(F)%*%fp_c 

PSI_coord<-Dr_inv%*%F%*%fp_r 

We display the graph of the main coordinates: 

PRINCOORD<-rbind(PSI_coord,PHI_coord) 

rows<-row.names(X);columns<-colnames(X) 

plot(PRINCOORD[,1],PRINCOORD[,2],type="n",main="Main 

Coordinates",xlab="Axis1",ylab="Axis2")+ 

text(PRINCOORD[1:20,1],PRINCOORD[1:20,2],labels=rows,col="spring

green4") 

text(PRINCOORD[21:29,1],PRINCOORD[21:29,2],labels=columns,col="

violetred") 

abline(h=0,v=0,lty=2,lwd=1.5) 

We obtain: 
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Looking at this graph we can say, for example, that in regions such as 

Abruzzo, Molise, Umbria rabbits are mainly bred.  

We choose the components: 

inertia<-sum(diag(S))-1 

sum(lambda) 

in_exp<-lambda/inertia 

in_exp_<-cumsum(in_exp) 

We visualize the results obtained: 

 

The first dimension alone explains 58.57% of the variability, and the 

first three together explain 92.26% of the overall variability of the data. 

The results obtained  can be displayed graphically with  the scree-plot 

of the inertia explained: 

screeplot<-barplot(in_exp,main="Scree-plot inertia", xlab="Size", 

ylab="Lambda", col="lightblue") 
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For the quality of the representation: 

- to evaluate how much a mode influences or participates in the 

factorial axis we calculate the absolute contributions, CA, both 

for rows and columns: 

ca_r<-Dr%*%fp_c^2 

ca_c<-DC%*%fp_r^2 

- To evaluate the quality of the representation we calculate the 

relative contributions, CR. These give a better measure of the 

representation of the points on the axes and is given by the 

cosine of the angle formed by the projection vector of the point 

and the relative vector  i (or j) at the point i (or j) in its original 

space: 

G<-matrix(sumcol,20,9,byrow=T) 

di<-(Pr-G)^2%*%Dc_inv 

d_ig<-apply(di,1,sum) 

cos2r<-PSI_coord^2/d_ig 

H<-matrix(sumrow,20,9) 

dj<-Dr_inv%*%(Pc-H)^2 

d_jh<-apply(dj,2,sum) 

COS2C<-PHI_coord^2/d_jh 
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R for the analysis of correspondences provides a package called 

FactoMineR, which adds information on individuals and variables and 

allows you to create a joint two-dimensional graph of individuals and 

variables.  

On R to be able to use this package you must first download it: 

 

 

After installing it you need to call it with the command 

library(FactoMineR) 

Let's move on to the creation of the two-dimensional graph Individuals 

and variables: 
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CA(X, ncp = 5, row.sup = NULL, col.sup = NULL, quanti.sup=NULL, 

quali.sup = NULL, graph = TRUE, axes = c(1,2), row.w = NULL) 

Graphically we will have: 

 

Interpretation of results: 

We can say that the initial hypothesis is confirmed.  In particular, the regions 
most dedicated to sheep farming seem to be Tuscany, Sardinia and Basilicata, 
and this can be explained by the fact that these regions are mountain and 
transhumance areas. Horses are mostly bred in Puglia, Liguria and Sicily 
because these animals have always been used for work in the countryside. 
Cattle are present in Trentino Alto-Adige, Veneto, Piedmont, Lombardy and 
Emilia-Romagna; In fact, these regions have a tradition of more developed 
breeding for food use. Rabbits appear mainly in Umbria, Abruzzo and Molise. 
Instead, pigs seem to be more reared in the Marche, Campania and Molise; 
These regions also have a tradition of more developed breeding for food use. 
Goats, on the other hand, are placed in the middle of the axes, probably 
because there aren’t regions that prefer their breeding. 
 

Self-assessment (multiple 

choice queries and 

answers) 

 
 

1. What do transition formulas do? 
 

A) Switch between spaces 
B) Move from the representation of absolute contributions to 
that of related contributions 
C) Switch from the matrix of frequencies relative to those of 
the profiles 
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2. Why do the chi-square test  before implementing AC? 

    
A) To verify whether the variables are quantitative 
B) To assess whether the variables are qualitative 
C) To analyze the existence of interdependence between the 
two variables 

3. What is the goal of Correspondence Analysis? 
 

A) Maximize the explained variability 
B) Maximize the explained inertia 
C) Minimize explained inertia 
 

Resources (videos, 

reference link) 
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